Level6opaedia

'A level is a level'

Compiled for www.glosmaths.org, 2008

Please note that Using and Applying assessment criteria are not included within the Levelopaedia

Level6opaedia, Glosmaths, 2008

Numbers and the Number System

Use the equivalence of fractions, decimals a	and percentages to compare proportions
Convert fraction and decimal operators to	Show me a set of equivalent fractions, decimals and
percentage operators by multiplying by 100. For	percentages.
example:	
• $0.45; 0.45 \times 100\% = 45\%$	Show me i) a fraction between $1/3$ and $\frac{1}{2}$ ii) a
7/12; (7 ÷ 12) × 100% = 58.3% (1 d.p.)	percentage between 1/3 and 1/2
Continue to use mental methods for finding	What is wrong:
percentages of quantities	• 13% of 78 = 78 ÷ 13 = 6
	• 40% of 400kg = $400 \div 40 = 10$
Use written methods, e.g.	
 Using an equivalent fraction: 13% of 48; 	True / Never / Sometimes:
$13/100 \times 48 = 624/100 = 6.24$	To calculate 13% of a quantity, you divide by 13
 Using an equivalent decimal: 13% of 48; 0.13 × 	45s% is greater than 1%
48 = 6.24	
	Convince me that:
	• 7/12 = 58.3% (1 d.p.)
	• 13% of 48 = 6.24

Calculating

Calculate percentages and find the outcome	e of a given percentage increase or
 decrease Use written methods, e.g. Using an equivalent fraction: 13% of 48; 13/100 × 48 = 624/100 = 6.24 Using an equivalent decimal: 13% of 48; 0.13 × 	Show me an amount and a percentage increase that gives the answer £44 What is the same/different about:
 Using an equivalent decimal: 13% of 48; 0.13 × 48 = 6.24 Using a unitary method: 13% of 48; 1% of 48 = 0.48 so 13% of 48 = 0.48 × 13 = 6.24 	• $13/100 \times 48 = 624/100 = 6.24$ • $0.13 \times 48 = 6.24$ • 1% of $48 = 0.48$ so 13% of $48 = 0.48 \times 13 = 6.24$
 Find the outcome of a given percentage increase or decrease. e.g. an increase of 15% on an original cost of £12 gives a new price of £12 × 1.15 = £13.80, 	Convince me that £12 increased by 15% is £13.80
• or 15% of £12 = £1.80 £12 + £1.80 = £13.80	
Divide a quantity into two or more parts in ratio and direct proportion	a given ratio and solve problems involving
 Solve problem such as: Potting compost is made from loam, peat and sand in the ratio 7:3:2 respectively. A gardener 	Show me a quantity divided correctly into a ratio of three parts.
 used 1.5 litres of peat to make compost. How much loam did she use? How much sand? The angles in a triangle are in the ratio 6:5:7. Find the sizes of the three angles. 	Show me how pupils could be in a school if the ratio of pupils with brown hair, blond hair, black hair in a school is 4:2:5.
	What is the same/different about: 2:7, 3:4:2, 1:4:4
	Convince me that if the ratio of pupils in a school with brown hair, blond hair, black hair in a school is 4:2:5 then there cannot be 122 pupils in the school.
	Convince me that if the ratio of pupils in a school with brown hair, blond hair, black hair in a school is 4:2:5 and there are 24 pupils with blond hair, the number of pupils in the school is 132.
Use proportional reasoning to solve a problem as 100%, or as a whole	em, choosing the correct numbers to take
Use unitary methods and multiplicative methods, e.g.There was a 25% discount in a sale. A boy paid	Show me a problem you can solve using the unitary method.
 £30 for a pair of jeans in the sale. What was the original price of the jeans? When heated, a metal bar increases in length from 1.25m to 1.262m. Calculate the percentage increase correct to one decimal 	What is wrong: If a boy paid £30 for a pair of jeans in a 25% discount sale, the original price of the jeans was £37.50.
place.	True/never/sometimes:The inverse of 'increase by 10%' is decrease by 10%'
	 The inverse of 'increase by 25% is decrease by 20%'
	Convince me that if a boy paid £30 for a pair of jeans in a 25% discount sale, the original price of the jeans was £40.
Add and subtract fractions by writing them fractions of quantities (fraction answers);	
Add and subtract more complex fractions such as $11/18 + 7/24$, including mixed fractions.	Show me: • a pair of fractions with a sum of 3/5
Find 2/7 of 5kg.	 a pair of fractions with a difference of 2/7 a fraction and a quantity such that the answer is 6kg
Multiply an integer by a fraction such as 4 x 3/5	What is the same/different about:
Divide an integer by a fraction such as 3 ÷ 2/3	 2/3 + 3/8, 1/12 + 3/4, 5/6 + 1/4

 Solve problems involving fractions, e.g. In a survey of 24 pupils 1/3 liked football best, 1/4 liked basketball, 3/8 liked athletics and the rest liked swimming. How many liked swimming? 	 17/24 – 2/3, 5/8 – 2/3, 11/12 – 3/4 True/never/sometimes: Pairs of fractions have one common denominator When adding fractions, both denominators have to be changed When subtracting fractions, both denominators have to be changed Multiplying an integer by a fraction gives a smaller answer Dividing an integer by a fraction gives a smaller answer
	Convince me: • that $2/7 + 3/5 = 31/35$ • that $3 \div 2/3 = 4\frac{1}{2}$

<u>Algebra</u>

Use systematic trial and improvement methods solutions to harder equations	and ICT tools to find approximate
Use trial and improvement for algebraic problems, e.g. $x^3 + x = 20$	Convince me that the solution to 1 decimal place for the equation $x^3 + x = 20$ is $x = 2.6$
Use trial and improvement for equivalent problems, e.g.	
A number plus its cube is 20, what's the number?The length of a rectangle is 2cm longer than the	
width. The area is 67.89cm ² . What's the width?	
Pupils should have opportunities to use a spreadsheet for trial and improvement methods	
Construct and solve linear equations with integ	er coefficients, using an appropriate
method Solve, e.g.	Show me:
 3c - 7 = -13 1.7m2 = 10.625 	 a linear equation with the solution x = 4 a two step linear equation with the solution
• $4(z + 5) = 84(b - 1) - 5(b + 1) = 0$	x = 4
• $12 / (x+1) = 21 / (x + 4)$	What is wrong:
Construct linear equations, e.g. The length of a rectangle is three times its width. Its perimeter is 24cm. Find its	If $3x - 2 = 2$ then $3x = 4$ so $x = \frac{3}{4}$
area.	True/never/sometimes:
	 Linear equations have one solution Linear equations can be solved
	 When solving equations involving brackets, such as 3(x-2) = 12, the first step is to
	multiply the brackets out
	Convince me that:
	 6 = 2x - 8 has only one solution. the solution to the equation 3x - 2 = 2 is
	not $x = \frac{3}{4}$.
Generate terms of a sequence using term-to-ter the sequence, on paper and using ICT; write an	
an arithmetic sequence.	
Generate the first five terms if, e.g. you start with 100 and subtract 5 each time	Show me: • a sequence that has the term-to-term rule
 you start with 2 and double each time the nth term is n+3 	of +2. • the sequence that has the position-to-term
 the nth term is 105 - 5n 	rule of +2.
 the nth term is 2n - 0.5 	 the sequence that has the nth term of i) n+2 ii) 3n+2
Find the nth term for, e.g. 7, 12, 17, 22, 27,	Convince me that:
 -12, -7, -2, 3, 8, 	• the nth term of the sequence 5, 8, 11, 14,
• 4, -2, -8, -14, -20,	is 3n+ 2 • that the nth term of the sequence 15, 11,
Use a spreadsheet to generate tables of values and explore term-to-term and position-to-term linear	7, 3, is 19 – 4n
relationships	
Plot the graphs of linear functions, where y is g that equations of the form $y = mx+c$ correspondent	
Plot the graphs of simple linear functions using all four	Show me:
quadrants by generating co-ordinate pairs or a table of values. e.g.	 a linear function that passes through the point (0,3)
• $y = 2x - 3$ • $y = 5 - 4x$	 a linear function with a gradient of 4 a linear function with a negative gradient
Understand the gradient and intercept in $y = mx + c$, describe similarities and differences of given straight line	True/never/sometimes:If you increase the value of m, the line is
graphs. e.g. y = 2x + 4	steeperIf you increase the value of c, the line is
y = 2x + 3 y = 2x - 3	steeper

Without drawing the graphs, compare and contrast features of graphs such as: • y = 3x • y = 3x + 4 • y = x + 4 • y = x - 2 • y = 3x - 2 • y = -3x + 4	 Convince me that: the graph of y = 2x -2 goes through the point (0,-2) the graph of 2y = 2x + 4 goes through the point (0,2)
Construct functions arising from real-life proble graphs; interpret graphs arising from real situat	
The graph below shows information about as race between two animals – the hare (red) and the tortoise (blue)	 Show me a description of a journey that produces a distance/ time graph with a shape similar to a trapezium. True/never/sometimes: On a distance/ time graph, if the graph is horizontal then the object is travelling at a constant speed. On a distance/ time graph, if the graph has a negative gradient then the object is travelling downhill. Convince me that on a distance/ time graph, if the graph, if the graph is horizontal then the object is stationary.
 Who was ahead after 2 minutes? What happened at 3 minutes? At what time did the tortoise draw level with the hare? Between what times was the tortoise travelling fastest? By how much distance did the tortoise win the race? 	

Shape, Space and Measures

	roportios
Classify quadrilaterals by their geometric p Know the properties (equal and/or parallel sides,	Show me a quadrilateral:
equal angles, right angles, diagonals bisected	 that has one pair of parallel sides
and/or at right angles, reflection and rotation	whose diagonals bisect at right angles
symmetry) of:	that has two lines of symmetry
 an isosceles trapezium 	that has rotational symmetry of order 2.
 a parallelogram 	
 a rhombus 	What is the same/different about:
 a kite 	 trapezium, parallelogram, rhombus, kite
 an arrowhead or delta 	 rhombus, kite, arrowhead, trapezium
	Convince me that:
	a rhombus is a parallelogram but a parallelogram is
	not necessarily a rhombus.
	a trapezium can not have three acute angles
Solve geometrical problems using propertie	es of angles, of parallel and intersecting
lines, and of triangles and other polygons	
Explain why, e.g.	Show me:
 equilateral triangles, squares and regular 	a polygon that will tessellate on its own
hexagons will tessellate on their own, but other	a pair of polygons that tessellate with each other.
regular polygons will not;	True (nover (competing op)
 squares and regular octagons will tessellate 	True/never/sometimes:
together.	Regular polygons will tessellate on their own Triangles tessellate on their own
	 Triangles tessellate on their own Quadrilaterals tessellate on their own
	Hexagons tessellate on their own
	Convince me that
	 the sum of the exterior angles of a polygon is
	360°.
	 a regular hexagon will tessellate on its own.
	 squares and regular octagons will tessellate
	together.
Identify alternate and corresponding angle	
angles of a triangle is 180° and of a quadri	
Know the difference between a demonstration and a	Show me a pair of alternate / corresponding angles
proof.	
	True/never/sometimes:
	True/never/sometimes: • The sum of the angles of a triangle is 180°
	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal
	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size
	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal
	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle.
	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that
	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°.
	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°.
Devise instructions for a computer to gene	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°.
Draw a square / hexagon / equilateral triangle using	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°.
Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the same/ different about: Forward 90, Right 90
Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. the sum of the angles of a quadrilateral is 360°. Tate and transform shapes and paths. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90
Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. the sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°.
Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon <i>Visualise and use 2-D representations of 3-</i> Visualise solids from an oral description, e.g.	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. the sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. The sum of the sum of the angles of a quadrilateral is 360°. The sum of the sum of the angles of a quadrilateral is 360°. The sum of the sum o
Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon <i>Visualise and use 2-D representations of 3-</i> Visualise solids from an oral description, e.g. Identify the 3-D shape if:	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. The sum of the angles of a quadrilateral is 360°. the sum of the angles of a quadrilateral is 360°. ate and transform shapes and paths. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 D objects Show me: a solid with a plan that is square.
 Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-Visualise solids from an oral description, e.g. Identify the 3-D shape if: The front and side elevations are both triangles 	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. Convince me that the sum of the angles of a quadrilateral is 360°. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 D objects Show me: a solid with a plan that is square. a solid with front and side elevations both
 Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-Visualise solids from an oral description, e.g. Identify the 3-D shape if: The front and side elevations are both triangles and the plan is a square. 	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. Convince me that the sum of the angles of a quadrilateral is 360°. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 D objects Show me: a solid with a plan that is square. a solid with front and side elevations both triangles.
 Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-Visualise solids from an oral description, e.g. Identify the 3-D shape if: The front and side elevations are both triangles and the plan is a square. The front and side elevations are both 	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 Dobjects Show me: a solid with a plan that is square. a solid with front and side elevations both triangles. a solid with front and side elevations both
 Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-Visualise solids from an oral description, e.g. Identify the 3-D shape if: The front and side elevations are both triangles and the plan is a square. The front and side elevations are both rectangles and the plan is a circle. 	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 D objects Show me: a solid with a plan that is square. a solid with front and side elevations both triangles.
 Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-Visualise solids from an oral description, e.g. Identify the 3-D shape if: The front and side elevations are both triangles and the plan is a square. The front and side elevations are both rectangles and the plan is a circle. The front elevation is a rectangle, the side 	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. Convince me that the sum of the angles of a quadrilateral is 360°. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 Dobjects Show me: a solid with a plan that is square. a solid with front and side elevations both triangles. a solid with front and side elevations both
 Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-Visualise solids from an oral description, e.g. Identify the 3-D shape if: The front and side elevations are both triangles and the plan is a square. The front and side elevations are both rectangles and the plan is a circle. The front elevation is a rectangle, the side elevation is a triangle and the plan in a 	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. Convince me that the sum of the angles of a quadrilateral is 360°. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 Dobjects Show me: a solid with a plan that is square. a solid with front and side elevations both triangles. a solid with front and side elevations both
 Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-Visualise solids from an oral description, e.g. Identify the 3-D shape if: The front and side elevations are both triangles and the plan is a square. The front and side elevations are both rectangles and the plan is a circle. The front elevation is a rectangle, the side 	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. Convince me that the sum of the angles of a quadrilateral is 360°. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 Dobjects Show me: a solid with a plan that is square. a solid with front and side elevations both triangles. a solid with front and side elevations both
 Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-Visualise solids from an oral description, e.g. Identify the 3-D shape if: The front and side elevations are both triangles and the plan is a square. The front and side elevations are both rectangles and the plan is a circle. The front elevation is a rectangle, the side elevation is a triangle and the plan in a rectangle. 	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. Convince me that the sum of the angles of a quadrilateral is 360°. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 Dobjects Show me: a solid with a plan that is square. a solid with front and side elevations both triangles. a solid with front and side elevations both
 Draw a square / hexagon / equilateral triangle using LOGO and use the instructions to compare with the exterior angles of a polygon Visualise and use 2-D representations of 3-Visualise solids from an oral description, e.g. Identify the 3-D shape if: The front and side elevations are both triangles and the plan is a square. The front and side elevations are both rectangles and the plan is a circle. The front elevation is a rectangle, the side elevation is a triangle and the plan in a 	 The sum of the angles of a triangle is 180° The sum of the angles of a quadrilateral is 360°. Alternate angles are equal The size of a corresponding angle equals the size of an alternate angle. Convince me that the sum of the angles of a triangle is 180°. the sum of the angles of a quadrilateral is 360°. Convince me that the sum of the angles of a quadrilateral is 360°. What is the same/ different about: Forward 90, Right 90 Right 90, Forward 90 D objects Show me: a solid with a plan that is square. a solid with front and side elevations both triangles. a solid with front and side elevations both

a rectangle?	
 a triangle? 	
 a pentagon? 	
a hexagon? Following 2 D observed without a construction of a plan	
Enlarge 2-D shapes, given a centre of enlar factor	gement and a positive whole-number scale
Construct an enlargement given the object, centre	Show me an enlargement.
and scale factor	
Find the control and (or cools factor from the chiest	Convince me:
Find the centre and / or scale factor from the object and image	 how to enlarge a shape or object with the centre of enlargement outside the shape.
	 how to enlarge a shape or object with the
	centre of enlargement inside the shape.
	 how to find the centre of enlargement given the object and image.
Know that translations, rotations and reflect	
objects on to congruent images	
Find missing lengths / angles on diagrams that	Show me a i) translation, ii) rotation, iii) reflection
show an object and its image	What is the same/different about: translation,
	rotation, reflection, enlargement
	U U
	True/never/sometimes: • Translations preserve length
	 Rotations preserve length
	Reflections preserve length
	Enlargements preserve length
	 Translations map objects onto congruent images Rotations map objects onto congruent images
	 Reflections map objects onto congruent images
	Enlargements map objects onto congruent
	images
	Convince me that:
	 Translations, rotations and reflections preserve
	length
	 Translations, rotations and reflections map objects onto congruent images
Use straight edge and compasses to do sta	
Construct	Show me:
 the mid-point and perpendicular bisector of a 	 a construction you can do using a straight edge
line segment the bisector of an angle	and a pair of compassesa construction where it is important to keep the
 the perpendicular from a point to a line 	same compass arc.
 the perpendicular from a point on a line 	
	Convince me how to construct:
	 the mid-point and perpendicular bisector of a line segment
	 the bisector of an angle
	 the perpendicular from a point to a line
Deduce and use formulae for the area of a t	• the perpendicular from a point on a line
of a cuboid; calculate volumes and surface	
Suggest possible dimensions for triangles and	Show me:
parallelograms when the area is known	• a triangle with an area of 24cm ² .
Find three cuboids with a volume of 24cm ³	 a parallelogram with an area of 24cm². a cuboid with a volume of 60cm³.
	 a cuboid with a volume of 60cm². a cuboid with a surface area of 60cm².
Find three cuboids with a surface area of 60cm ²	
	True/never/sometimes:
	 To find the area of a triangle, you multiply the base by the height and half the answer
	 You can build a solid cuboid using any number of
	interlocking cubes.
	Convince me that:
	 you have to multiply the base by the

	 perpendicular height to find the area of a parallelogram. you have to multiply the base by the perpendicular height and half the answer to find the area of a triangle.
Know and use the formulae for the circumference and area of a circle	
A touring cycle has wheels of diameter 70cm. How many rotations does each wheel make for every 10km travelled?	 Show me: a circle with a circumference greater than 50 cm. a circle with an area greater than 100cm².
A door is in the shape of a rectangle with a semi- circular arch. The rectangular part is 2m high and the door is 90cm wide. What is the area of the door?	 Convince me that: the circumference of a circle with radius 10cm is 62.8cm (to 1dp) the area of a circle with radius 10cm is 314cm² (to 3sf)

Handling Data

Design a survey or experiment to capture to sources; design, trial and if necessary refin for large discrete and continuous sets of ra design and use two-way tables	e data collection sheets; construct tables
 Investigation of jumping or throwing distances: Check that the data collection sheet is designed to record all factors that may have a bearing on the distance jumped or thrown, such as age or height. Decide the degree of accuracy needed for each factor. Recognise that collecting too much information will slow down the experiment; too little may limit its scope. 	Show me an example of a data collection sheet. Show me an example of a class interval. Convince me how you decided on the sample size.
 Select, construct and modify, on paper & using ICT: pie charts for categorical data; bar charts and frequency diagrams for discrete and continuous data; simple time graphs for time series; scatter graphs. Identify which are most useful in the context of the problem 	
Understand that pie charts are mainly suitable for categorical data. They should draw pie charts using ICT and by hand, usually using a calculator to find angles Draw compound bar charts with subcategories Use frequency diagrams for continuous data and know that the divisions between bars should be labelled Know that it can be appropriate to join points on a line graph in order to compare trends over time <i>Find and record all possible mutually exclus</i> <i>successive events in a systematic way</i> Use a possibility space diagram to show all outcomes when two dice are rolled together	 Show me set of discrete data. Show me set of continuous data. Convince me the information you need to calculate the size of the angle for each category when drawing a pie chart. When considering a range of graphs representing the same data: Which is the easiest to interpret? Why? Which is most helpful in addressing the hypothesis? Why?
 Know that the sum of probabilities of all methis when solving problems Two coins are thrown at the same time. There are four possible outcomes: HH, HT, TH, TT. How many possible outcomes are there if: Three coins are used? Four coins are used? Five coins are used? 	Convince me that the probability of getting two sixes when rolling two fair dice is 1/36.

	Convince me the sum of sum of probabilities of all mutually exclusive outcomes is 1
Communicate interpretations and results of	f a statistical survey using selected tables,
graphs and diagrams in support	
Using selected tables, graphs and diagrams to	Show me a graph that you could use to
support; describe the current incidence of male and	communicate the results of a statistical survey.
female smoking in the UK, using frequency	
diagrams to demonstrate the peak age groups.	Convince me why you used that i) table ii) graph
Show how the position has changed over the past	
20 years; using line graphs. Conclude that the only	
group of smokers on the increase is females aged	
15 -25.	