Level6opaedia

'A level is a level'

Compiled for www.glosmaths.org, 2008
Please note that Using and Applying assessment criteria are not included within the Levelopaedia

Numbers and the Number System

Use the equivalence of fractions, decimals and percentages to compare proportions

Convert fraction and decimal operators to
percentage operators by multiplying by 100. For example:

- $0.45 ; 0.45 \times 100 \%=45 \%$
- $7 / 12$; $(7 \div 12) \times 100 \%=58.3 \%$ (1 d.p.)

Continue to use mental methods for finding percentages of quantities

Use written methods, e.g.

- Using an equivalent fraction: 13% of 48 ; $13 / 100 \times 48=624 / 100=6.24$
- Using an equivalent decimal: 13% of $48 ; 0.13 \times$ $48=6.24$

Show me a set of equivalent fractions, decimals and percentages.

Show me i) a fraction between $1 / 3$ and $1 / 2$ ii) a percentage between $1 / 3$ and $1 / 2$

What is wrong:

- 13% of $78=78 \div 13=6$
- 40% of $400 \mathrm{~kg}=400 \div 40=10$

True / Never / Sometimes:
To calculate 13% of a quantity, you divide by 13
$45 s \%$ is greater than 1%
Convince me that:

- $7 / 12=58.3 \%$ (1 d.p.)
- 13% of $48=6.24$

Calculating

Calculate percentages and find the outcome of a given percentage increase or decrease

Use written methods, e.g.

- Using an equivalent fraction: 13\% of 48; $13 / 100 \times 48=624 / 100=6.24$
- Using an equivalent decimal: 13% of $48 ; 0.13 \times$ $48=6.24$
- Using a unitary method: 13% of $48 ; 1 \%$ of 48 $=0.48$ so 13% of $48=0.48 \times 13=6.24$

Find the outcome of a given percentage increase or decrease. e.g.

- an increase of 15% on an original cost of $£ 12$ gives a new price of $£ 12 \times 1.15=£ 13.80$,
- or 15% of $£ 12=£ 1.80 \quad £ 12+£ 1.80=£ 13.80$

Show me an amount and a percentage increase that gives the answer $£ 44$

What is the same/different about:

- $13 / 100 \times 48=624 / 100=6.24$
- $0.13 \times 48=6.24$
- 1% of $48=0.48$ so 13% of $48=0.48 \times 13=$ 6.24

Convince me that $£ 12$ increased by 15% is $£ 13.80$

Divide a quantity into two or more parts in a given ratio and solve problems involving ratio and direct proportion

Solve problem such as:

- Potting compost is made from loam, peat and sand in the ratio 7:3:2 respectively. A gardener used 1.5 litres of peat to make compost. How much loam did she use? How much sand?.
- The angles in a triangle are in the ratio 6:5:7. Find the sizes of the three angles.

Show me a quantity divided correctly into a ratio of three parts.

Show me how pupils could be in a school if the ratio of pupils with brown hair, blond hair, black hair in a school is 4:2:5.

What is the same/different about:
$2: 7,3: 4: 2,1: 4: 4$
Convince me that if the ratio of pupils in a school with brown hair, blond hair, black hair in a school is 4:2:5 then there cannot be 122 pupils in the school.

Convince me that if the ratio of pupils in a school with brown hair, blond hair, black hair in a school is 4:2:5 and there are 24 pupils with blond hair, the number of pupils in the school is 132 .

Use proportional reasoning to solve a problem, choosing the correct numbers to take

 as 100%, or as a wholeUse unitary methods and multiplicative methods, e.g.

- There was a 25% discount in a sale. A boy paid $£ 30$ for a pair of jeans in the sale. What was the original price of the jeans?
- When heated, a metal bar increases in length from 1.25 m to 1.262 m . Calculate the percentage increase correct to one decimal place.

Show me a problem you can solve using the unitary method.

What is wrong:
If a boy paid $£ 30$ for a pair of jeans in a 25% discount sale, the original price of the jeans was £37.50.

True/never/sometimes:

- The inverse of 'increase by 10% ' is decrease by 10\%'
- The inverse of 'increase by 25% is decrease by 20\%'

Convince me that if a boy paid $£ 30$ for a pair of jeans in a 25% discount sale, the original price of the jeans was $£ 40$.

Add and subtract fractions by writing them with a common denominator, calculate fractions of quantities (fraction answers); multiply and divide an integer by a fraction

Add and subtract more complex fractions such as $11 / 18+7 / 24$, including mixed fractions.

Find $2 / 7$ of 5 kg .
Multiply an integer by a fraction such as $4 \times 3 / 5$
Divide an integer by a fraction such as $3 \div 2 / 3$

Show me:

- a pair of fractions with a sum of $3 / 5$
- a pair of fractions with a difference of 2/7
- a fraction and a quantity such that the answer is 6 kg

Solve problems involving fractions, e.g.

- In a survey of 24 pupils $1 / 3$ liked football best, 1/4 liked basketball, $3 / 8$ liked athletics and the rest liked swimming. How many liked swimming?
- $17 / 24-2 / 3,5 / 8-2 / 3,11 / 12-3 / 4$

True/never/sometimes:

- Pairs of fractions have one common denominator
- When adding fractions, both denominators have to be changed
- When subtracting fractions, both denominators have to be changed
- Multiplying an integer by a fraction gives a smaller answer
- Dividing an integer by a fraction gives a smaller answer

Convince me:

- that $2 / 7+3 / 5=31 / 35$
- that $3 \div 2 / 3=41 / 2$

Algebra

Use systematic trial and improvement methods and ICT tools to find approximate solutions to harder equations

Use trial and improvement for algebraic problems, e.g. x^{3}
$+x=20$

Convince me that the solution to 1 decimal place for the equation $x^{3}+x=20$ is $x=2.6$

Use trial and improvement for equivalent problems, e.g.

- A number plus its cube is 20, what's the number?
- The length of a rectangle is 2 cm longer than the width. The area is $67.89 \mathrm{~cm}^{2}$. What's the width?

Pupils should have opportunities to use a spreadsheet for trial and improvement methods

Construct and solve linear equations with integer coefficients, using an appropriate method

Solve, e.g.

- $3 c-7=-13$
- $\quad 1.7 \mathrm{~m} 2=10.625$
- $4(z+5)=84(b-1)-5(b+1)=0$
- $12 /(x+1)=21 /(x+4)$

Construct linear equations, e.g. The length of a rectangle is three times its width. Its perimeter is 24 cm . Find its area.

Show me:

- a linear equation with the solution $x=4$
- a two step linear equation with the solution $x=4$

What is wrong:

If $3 x-2=2$ then $3 x=4$ so $x=3 / 4$
True/never/sometimes:

- Linear equations have one solution
- Linear equations can be solved
- When solving equations involving brackets, such as $3(x-2)=12$, the first step is to multiply the brackets out

Convince me that:

- $6=2 x-8$ has only one solution.
- the solution to the equation $3 x-2=2$ is not $x=3 / 4$.

Generate terms of a sequence using term-to-term and position-to-term definitions of the sequence, on paper and using ICT; write an expression to describe the nth term of an arithmetic sequence.

Generate the first five terms if, e.g.

- you start with 100 and subtract 5 each time
- you start with 2 and double each time
- the nth term is $\mathrm{n}+3$
- the nth term is 105-5n
- the nth term is $2 n-0.5$

Find the nth term for, e.g.

- $7,12,17,22,27, \ldots$
- $-12,-7,-2,3,8, \ldots$
- $4,-2,-8,-14,-20, \ldots$

Use a spreadsheet to generate tables of values and explore term-to-term and position-to-term linear relationships

Show me:

- a sequence that has the term-to-term rule of +2 .
- the sequence that has the position-to-term rule of +2 .
- the sequence that has the nth term of i) $n+2$ ii) $3 n+2$

Convince me that:

- the nth term of the sequence $5,8,11,14$, .. is $3 n+2$
- that the nth term of the sequence 15,11 , $7,3, \ldots$ is $19-4 n$

Plot the graphs of linear functions, where y is given explicitly in terms of x; recognise that equations of the form $\mathbf{y}=\mathbf{m x}+\mathbf{c}$ correspond to straight-line graphs

Plot the graphs of simple linear functions using all four quadrants by generating co-ordinate pairs or a table of values. e.g.

- $y=2 x-3$
- $y=5-4 x$

Understand the gradient and intercept in $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, describe similarities and differences of given straight line graphs. e.g.

- $y=2 x+4$
- $y=2 x-3$

Show me:

- a linear function that passes through the point $(0,3)$
- a linear function with a gradient of 4
- a linear function with a negative gradient

True/never/sometimes:

- If you increase the value of m, the line is steeper
- If you increase the value of c, the line is steeper

Without drawing the graphs, compare and contrast features of graphs such as:

- $y=3 x$
- $y=3 x+4$
- $y=x+4$
- $y=x-2$
- $y=3 x-2$
- $y=-3 x+4$

Construct functions arising from real-Iffe problems and plot their corresponding graphs; interpret graphs arising from real situations
The graph below shows information about as race between two animals - the hare (red) and the tortoise (blue)

- Who was ahead after 2 minutes?
- What happened at 3 minutes?
- At what time did the tortoise draw level with the hare?
- Between what times was the tortoise travelling fastest?
- By how much distance did the tortoise win the race?

Convince me that:

- the graph of $y=2 x-2$ goes through the point $(0,-2)$
- the graph of $2 y=2 x+4$ goes through the point $(0,2)$

Show me a description of a journey that produces a distance/ time graph with a shape similar to a trapezium.

True/never/sometimes:

- On a distance/ time graph, if the graph is horizontal then the object is travelling at a constant speed.
- On a distance/ time graph, if the graph has a negative gradient then the object is travelling downhill.

Convince me that on a distance/ time graph, if the graph is horizontal then the object is stationary.

Shape, Space and Measures

Classify quadrilaterals by their geometric properties

Know the properties (equal and/or parallel sides, equal angles, right angles, diagonals bisected and/or at right angles, reflection and rotation symmetry) of:

- an isosceles trapezium
- a parallelogram
- a rhombus
- a kite
- an arrowhead or delta

Show me a quadrilateral:

- that has one pair of parallel sides
- whose diagonals bisect at right angles
- that has two lines of symmetry
- that has rotational symmetry of order 2.

What is the same/different about:

- trapezium, parallelogram, rhombus, kite
- rhombus, kite, arrowhead, trapezium

Convince me that:
a rhombus is a parallelogram but a parallelogram is not necessarily a rhombus.
a trapezium can not have three acute angles

Solve geometrical problems using properties of angles, of parallel and intersecting lines, and of triangles and other polygons

Explain why, e.g.

- equilateral triangles, squares and regular hexagons will tessellate on their own, but other regular polygons will not;
- squares and regular octagons will tessellate together.

Show me:

- a polygon that will tessellate on its own
- a pair of polygons that tessellate with each other.

True/never/sometimes:

- Regular polygons will tessellate on their own
- Triangles tessellate on their own
- Quadrilaterals tessellate on their own
- Hexagons tessellate on their own

Convince me that

- the sum of the exterior angles of a polygon is 360°.
- a regular hexagon will tessellate on its own.
- squares and regular octagons will tessellate together.

I dentify alternate and corresponding angles; understand a proof that the sum of the angles of a triangle is 180° and of a quadrilateral is 360°

Know the difference between a demonstration and a Show me a pair of alternate / corresponding angles proof.

True/never/sometimes:

- The sum of the angles of a triangle is 1800
- The sum of the angles of a quadrilateral is 360 .
- Alternate angles are equal
- The size of a corresponding angle equals the size of an alternate angle.

Convince me that

- the sum of the angles of a triangle is 180 .
- the sum of the angles of a quadrilateral is 360 .

Devise instructions for a computer to generate and transform shapes and paths.

Draw a square / hexagon / equilateral triangle using What is the same/ different about:
LOGO and use the instructions to compare with the - Forward 90, Right 90
exterior angles of a polygon

- Right 90, Forward 90

Visualise and use 2-D representations of 3-D objects

Visualise solids from an oral description, e.g. Identify the 3-D shape if:

- The front and side elevations are both triangles and the plan is a square.
- The front and side elevations are both rectangles and the plan is a circle.
- The front elevation is a rectangle, the side elevation is a triangle and the plan in a rectangle.

Is it possible to slice a cube so that the crosssection is:

Show me:

- a solid with a plan that is square.
- a solid with front and side elevations both triangles.
- a solid with front and side elevations both triangles and the plan is a square.
- a rectangle?
- a triangle?
- a pentagon?
- a hexagon?

Enlarge 2-D shapes, given a centre of enlargement and a positive whole-number scale
 factor

Construct an enlargement given the object, centre and scale factor

Find the centre and / or scale factor from the object and image

Show me an enlargement.
Convince me:

- how to enlarge a shape or object with the centre of enlargement outside the shape.
- how to enlarge a shape or object with the centre of enlargement inside the shape.
- how to find the centre of enlargement given the object and image.

Know that translations, rotations and reflections preserve length and angle and map objects on to congruent images

Find missing lengths / angles on diagrams that show an object and its image

Show me a i) translation, ii) rotation, iii) reflection
What is the same/different about: translation, rotation, reflection, enlargement

True/never/sometimes:

- Translations preserve length
- Rotations preserve length
- Reflections preserve length
- Enlargements preserve length
- Translations map objects onto congruent images
- Rotations map objects onto congruent images
- Reflections map objects onto congruent images
- Enlargements map objects onto congruent images

Convince me that:

- Translations, rotations and reflections preserve length
- Translations, rotations and reflections map objects onto congruent images

Use straight edge and compasses to do standard constructions

Construct

- the mid-point and perpendicular bisector of a line segment
- the bisector of an angle
- the perpendicular from a point to a line
- the perpendicular from a point on a line

Show me:

- a construction you can do using a straight edge and a pair of compasses
- a construction where it is important to keep the same compass arc.

Convince me how to construct:

- the mid-point and perpendicular bisector of a line segment
- the bisector of an angle
- the perpendicular from a point to a line
- the perpendicular from a point on a line

Deduce and use formulae for the area of a triangle and parallelogram, and the volume

 of a cuboid; calculate volumes and surface areas of cuboidsSuggest possible dimensions for triangles and parallelograms when the area is known

Find three cuboids with a volume of $24 \mathrm{~cm}^{3}$
Find three cuboids with a surface area of $60 \mathrm{~cm}^{2}$

Show me:

- a triangle with an area of $24 \mathrm{~cm}^{2}$.
- a parallelogram with an area of $24 \mathrm{~cm}^{2}$.
- a cuboid with a volume of $60 \mathrm{~cm}^{3}$.
- a cuboid with a surface area of $60 \mathrm{~cm}^{2}$.

True/never/sometimes:

- To find the area of a triangle, you multiply the base by the height and half the answer
- You can build a solid cuboid using any number of interlocking cubes.

Convince me that:

- you have to multiply the base by the
perpendicular height to find the area of a parallelogram.
- you have to multiply the base by the perpendicular height and half the answer to find the area of a triangle.

Know and use the formulae for the circumference and area of a circle

A touring cycle has wheels of diameter 70 cm . How Show me:
many rotations does each wheel make for every
10 km travelled?
A door is in the shape of a rectangle with a semicircular arch. The rectangular part is 2 m high and the door is 90 cm wide. What is the area of the door?

- a circle with a circumference greater than 50 cm .
- a circle with an area greater than $100 \mathrm{~cm}^{2}$.

Convince me that:

- the circumference of a circle with radius 10 cm is 62.8 cm (to 1 dp)
- the area of a circle with radius 10 cm is $314 \mathrm{~cm}^{2}$ (to 3sf)

Handling Data

Design a survey or experiment to capture the necessary data from one or more sources; design, trial and if necessary refine data collection sheets; construct tables for large discrete and continuous sets of raw data, choosing suitable class intervals; design and use two-way tables

Investigation of jumping or throwing distances:

- Check that the data collection sheet is designed to record all factors that may have a bearing on the distance jumped or thrown, such as age or height.
- Decide the degree of accuracy needed for each factor.
- Recognise that collecting too much information will slow down the experiment; too little may limit its scope.

Show me an example of a data collection sheet.
Show me an example of a class interval.
Convince me how you decided on the sample size.

Select, construct and modify, on paper \& using ICT:
 - pie charts for categorical data;
 - bar charts and frequency diagrams for discrete and continuous data;
 - simple time graphs for time series;
 - scatter graphs.
 I dentify which are most useful in the context of the problem

Understand that pie charts are mainly suitable for categorical data. They should draw pie charts using ICT and by hand, usually using a calculator to find angles

Draw compound bar charts with subcategories
Use frequency diagrams for continuous data and know that the divisions between bars should be labelled

Know that it can be appropriate to join points on a line graph in order to compare trends over time

Show me set of discrete data.
Show me set of continuous data.
Convince me the information you need to calculate the size of the angle for each category when drawing a pie chart.

When considering a range of graphs representing the same data:

- Which is the easiest to interpret? Why?
- Which is most helpful in addressing the hypothesis? Why?

Find and record all possible mutually exclusive outcomes for single events and two successive events in a systematic way

Use a possibility space diagram to show all outcomes when two dice are rolled together

Show me an example of a possibility space.
What is wrong:

- The probability of getting exactly one head when tossing two coins is $1 / 4$
- The probability of getting two sixes when rolling two fair dice is $1 / 12$

Convince me that the probability of getting exactly one head when tossing two coins is $1 / 2$.

Convince me that the probability of getting two sixes when rolling two fair dice is $1 / 36$.

Know that the sum of probabilities of all mutually exclusive outcomes is 1 and use this when solving problems

Two coins are thrown at the same time. There are four possible outcomes: HH, HT, TH, TT. How many possible outcomes are there if:

- Three coins are used?
- Four coins are used?
- Five coins are used?

Show me a pair of mutually exclusive events.

True/never/sometimes:

- The outcomes of tossing three coins are mutually exclusive
- The outcomes of rolling die and tossing a coin are mutually exclusive
- The sum of probabilities of all mutually exclusive outcomes is 1

Convince that a pair of outcomes for an experiment are mutually exclusive mutually exclusive outcomes is 1

Communicate interpretations and results of a statistical survey using selected tables, graphs and diagrams in support

Show me a graph that you could use to communicate the results of a statistical survey.

Convince me why you used that i) table ii) graph

Using selected tables, graphs and diagrams to support; describe the current incidence of male and female smoking in the UK, using frequency diagrams to demonstrate the peak age groups. Show how the position has changed over the past 20 years; using line graphs. Conclude that the only group of smokers on the increase is females aged 15-25.

